
It’s Personal: Using Text to Predict Myers-Briggs Personality Types

Eric Chiu , Hannah Sheetz , Tristrum Tuttle
University of Pennsylvania

chiueric@seas.upenn.edu, hsheetz@seas.upenn.edu, tut@seas.upenn.edu

Abstract
Can a computer model figure out a person’s per-
sonality just based on the text of their conversa-
tions? We want to predict Myers-Briggs personal-
ity types purely based on conversational quotes. By
building an effective model to categorize conversa-
tional quotes as Myers-Briggs type indicators, we
will help workers understand themselves and their
interactions better, improving productivity and suc-
cess in the workplace. We will also build a genera-
tive model to attempt to create quotes that fall into
a specified Myers-Briggs (MB) category.

1 Problem Background
In today’s society, more and more companies rely on per-
sonality types to help establish a company culture and even
streamline recruitment. Companies like Bridgewater and
Amazon use MB personality type tests to help them build
effective teams and reduce friction among employees. Ad-
ditionally, knowing ones own personality type is useful for
figuring out career plans, building relationships, and achiev-
ing more. Because the Meyer’s Briggs test is prone to bias
as people are likely to answer questions with how they want
to be rather than how they actually are, they can often be
placed into the wrong personality type. Our project allevi-
ates this problem of self identification by analyzing sentences
said in every day social media interaction and placing them
into MBTI personality types.

2 Approach
In this project, we attempt to answer two main questions. The
first question is, ”can we train a model to accurately predict a
person’s Myers-Briggs type using just blog posts?” The sec-
ond question is, ”can we train a model to reproduce blog posts
with a specified Myers-Briggs type?”

2.1 Data Overview
Our dataset was from Kaggle, and contains 8,675 instances
of people’s text posts and their MBTI type scraped from an
online forum called PersonalityCafe. MBTI personality types
consist of ISTJ, INTP, ISFJ, INFJ, ISTP, ISFP, INFP, INTJ,
ESTP, ESTJ, ESFJ, ENFJ, ESFP, ENTJ, ENTP, and ENFP. In

total, there are 16 personality types, and for our purposes, 16
different labels. The text for each instance contains the last 50
things a person has posted separated by three vertical lines.

2.2 Principle Data Analysis
We looked at the distribution of the number of instances for
each MBTI personality type. We found that the number of
instances for each MBTI personality type vary greatly, from
42 instances to 1832 instances. At first we thought this was
due to the actual distribution of personality types in the real
world, but after checking some statistics online and finding
that ESTJ, ESFJ, ESTP, and ESFP are the most popular MBTI
personalities, we concluded that our dataset is not represen-
tative of the real world population. Instead, it is represen-
tative of the users on the online forum PersonalityCafe. We
were also concerned about the unequal number of words per
instance for each MBTI personality type. If the number of
words for specific personality types were abnormally low, the
training dataset for those personality types would be low, thus
causing a weaker prediction compared to the other personal-
ity types. Luckily, after further analysis, we found that each
personality type generally had the same number of words per
instance, at an average of 1253 words per instance.

2.3 Data Cleaning
We have cleaned the text data by removing the text post break
characters (three vertical lines, or |||). We also removed URLs
from the text, because they were highly variable and did not
provide useful emotional analysis in IBM Watson. We de-
cided to leave punctuation, capitalization, and emojis in place
because they imply certain types of emotion in IBM Watson.
After analyzing the data, we realized that many posts refer-
enced MBTI types, so we removed all mentions of MBTI
types. After cleaning the data, we used a Python script to add
the IBM Watson emotion features to the data set. The emo-
tional features we included were anger, joy, sadness, disgust,
and fear. Each emotional feature is represented by a score
from 0 to 1, corresponding to how likely the text is to convey
that emotion. We decided to create the training and testing
dataset by an 80-20 split of the full dataset. We first shuffled
the instances around in case they were ordered in some par-
ticular way, such as by personality type. This results in 6998
instances for the training dataset, and 1677 instances for the
testing dataset. We also double checked if the distribution of

the number of instances for each MBTI personality type was
the same among the training and testing dataset.

3 Problem 1: Myers-Briggs Prediction
To answer the question ”can we train a model to predict a
person’s Myers-Briggs type based on their blog posts”, we
decided to experiment with both sentiment prediction and text
prediction models. When using sentiment to predict Myers-
Briggs type, we used LogReg, Random Forest, and Support
Vector Machine models. When using text based prediction,
we used a Naive Bayes model implemented using TF-IDF
transformed documents.

3.1 Models
Emotion Prediction Our initial models used just the Emo-
tional Scores to train and classify the Myers-Briggs types.
We tweaked the hyper-parameters of the LogReg, SVM, and
Random Forest models to find the best performance for each
model. The results of these models are shown below, and in
the appendix chart.
Naive Bayes: The Naive Bayes model implemented using
TF-IDF transformed documents. The model took the MBTI
and a long post that a person with that type wrote. The vec-
torizer had a maximum of 2000 features, used English stop
words, and had an n-gram range of (1, 3). Additionally, as the
model was refined, more stop words were added to the NLTK
stopwords. At the end of training, the top twenty words used
in each MBTI type’s blog posts. If a word was included in
all 16 of the MBTI or in 15 of the 16 MBTI, it was added
as a stop word as there was no or negligible effect on what
personality types use a word more or less often.
LDA Model: Since emotional scores were not able to provide
much insight, and TF-IDF has 2000 features, we decided to
try using Latent Dirichlet Allocation (LDA) to generate fea-
tures that incorporated aspects of the vocabulary used in the
text posts without requiring a single feature for each word.
To prepare the data, we used the NLTK SnowballStemmer to
replace each word in each blog post with its root. We then
generated a dictionary using the processed blog text, filtering
out lower extremes (words with fewer than 15 appearances)
and keeping the size of our dictionary below 100000 entries.
We used the LdaMulticore model from the gensim package to
generate our LDA categories. We built two distinct datasets
incorporating LDA categories. The first dataset added 15
LDA topic features. After training prediction models on this
first dataset and getting poor results, we decided to build a
second dataset with 50 LDA category features. After build-
ing the two datasets, we trained and tuned a Random For-
est Model, Logistic Regression Model, and SVM Model us-
ing the LDA category features along with the emotion scores
from IBM Watson. The top 3 words from each of the 15 LDA
categories has been included in the appendix, the 50 LDA
categories can be found in our Github.

3.2 Results
Emotion Prediction LogReg model with penalty=L1, tol=e-
5, and solver=liblinear had a validation accuracy of 0.229,

validation precision of 0.494, validation recall of 0.238, train-
ing accuracy of 0.231, training precision of 0.495, and train-
ing recall of 0.237. SVM model with kernel=linear had a
validation accuracy of 0.218, validation precision of 0.285,
validation recall of 0.09, training accuracy of 0.219, training
precision of 0.288, and training recall of 0.09. Random For-
est model max depth=20, n estimators=2000 had a validation
accuracy of 0.211, validation precision of 0.507, validation
recall of 0.488, training accuracy of 1.00, training precision
of 1.00, and training recall of 1.00. Among the three emotion
score models, based on our performance results, the LogReg
model is the best model.
Naive Bayes: We measured the performance of the Naive
Bayes with TF-IDF by training the model on 6,999 MBTI
types and their corresponding blog posts. This ensured that
there were enough words to create significant features. When
the training data was directly used for testing, the model re-
turned a cross validation score of 0.5367. For five fold cross
validating using the training data, the model returned cross
validation scores ranging from 0.3204 to 0.3457. Finally,
when the preseparated testing data was used, the model re-
turned a cross validation score of 0.3554. The performance of
all of these models increased when the additional stop words
discussed above were added. Additionally, we calculated the
top twenty words used by each type. Interesting, regardless
of if the type was thinking or feeling, the word ”feel” always
scored higher than ”think” or ”know” within these lists. We
can see differences associated with the letters of MBTI. Six
out of the eight MBTI types that had E, extroverted, as their
first letter, also had “friend” or “friends” in their top twenty
words compared with only two out of the eight MBTI types
that had I, introverted.
LDA Models: A table of both the LDA Model results can be
found in the appendix. We evaluated each model using 5 fold
cross validation. Each of the 15 category + emotional score
Models had below 25% accuracy, even when we increased
the number of LDA features to 50. However, the Random
Forest Model was able to score statistically better than ran-
dom chance, reaching a validation accuracy of over 23%. The
SVM models did the worst, and had a tendency to predict just
one or two categories.

4 Problem 2: Myers-Briggs Text Generation
To answer the question ”can we train a model to reproduce
blog posts with a specified Myers-Briggs type?”, we decided
to experiment with different types of Recurrent Neural Nets
(RNNs). RNNs are useful tools for text generation because
they keep track of state, allowing the net to make predictions
using information from previous inputs along with the current
input.

4.1 Models
We initially built two different character-level RNNs to gen-
erate text posts. Based on our research, we reasoned that a
character-level RNN would work the best for our task of text
generation because they can keep track of both short term and
long term memory, and the amount of training data needed is
much smaller due to the number of possible characters (about

100) being much smaller than the number of possible words
(about 200,000).
Linear RNN: The first RNN had an input of a one-hot en-
coded character (0 or 1 for 100 features corresponding to the
printable characters in python), along with 128 additional re-
current features initialized to 0. These features are fed into
two linear layers simultaneously. The first linear layer has
an output size of 100, and feeds into a dropout layer with
dropout rate of 1%, then the dropout layer feeds into a Log-
Softmax layer with a size of 100. The second linear layer is
a hidden layer, and has an output size of 128, and gets out-
put directly alongside the LogSoftmax output. In the training
loop, the LogSoftmax output is used to predict which charac-
ter will follow, and the hidden layer outputs are fed into the
RNN along with the actual next character as the next training
instance.
Gated Recurrent Unit RNN: The second RNN we built used
a Gated Recurrent Unit (GRU) layer instead of a linear hid-
den layer. While our previous RNN is essentially only able to
see one layer into the past, GRUs keep track of more previous
inputs than just the most recent using a series of internal gates
to decide how much an input should affect each node’s out-
put. Our GRU RNN uses an initial Embedding layer to map
inputs (a number from 1 to 100, indicating the character in-
put) to vectors of size 120, which will act as our hidden layer.
Each of these vectors is then input to the GRU layer, which
has an output size of 120 as well. Finally, we take the output
from the GRU and feed it into a linear layer with an output
size of 100, representing the character prediction.

4.2 Results
We measured performance of each RNN by training each
RNN on 1000 blog posts randomly selected from a single
category. This ensured that the RNN could receive enough
information to train while not repeating a single blog post
more than a few times. We used Cross-Entropy Loss as the
criterion for back propagation, and used the Adam optimizer
for forward propagation. Since training each RNN could take
several hours, we decided to start by training each RNN on
a single category, then choosing the best RNN to compare
two different categories. We quickly discovered that the Lin-
ear RNN was not as accurate as the GRU RNN, and despite
several rounds of parameter tuning, we could not reduce its
Cross-Entropy Loss to below 2.50. Here is an example gen-
erated blog post from our Linear RNN, which registered a
Cross-Entropy Loss of 2.5398:

I, arsd, ant oha geve if te itt ou mounde te geor I

pereaste ihat oEn I de mave amer an Na5x fer al

und ond 8in t peat ounoo he link pallo tho wast I

ouend at somessint At you,quot at oor bit ome ting

than thay pe thing ab tha gconly time tore golles

my /iouly acthet ing croe son tha faverinn thith bfo.

As you can see, although some words like ”thing” and ”time”
appear, many other words are jumbled or ill-formed. The
GRU performed much better, reaching a Cross-Entropy Loss
of around 1.40. Here is an example GRU generated blog post:

I’m an abcd and sleep because you can think a lot

of the phone (probably the word of something they

say they think it such the interesting the first than

the consider the nice they were all of the same than

the abcds are many parted to see look and every

article that so I like to it.

The GRU RNN was able to generate posts of almost en-
tirely correct English words and phrases, even putting to-
gether some long segments of reasonable sounding english
text: ”they were all of the same”, ”I’m an abcd”, etc. This
is fairly impressive considering the RNN works at a charac-
ter level and has no real understanding of the English lan-
guage outside of character relationship frequency. We de-
cided to use the GRU for our final text generation analysis.
We trained the GRU RNN on a single category for 1000 it-
erations, and evaluated the Cross-Entropy Loss after each 50
iterations. The table with those results can be found in the
appendix. The example sentences in the table were generated
using the starting character ”I”, then predicting the next 1000
characters. After around 500 iterations, the model seems to
reach a minimum loss of around 1.5. The lowest training loss
reached was 1.4, but after 500 iterations the model seems to
bounce around quite a bit, as shown in the table.

5 Conclusion
For fun, we decided to analyze our own text using our best
TF-IDF model. We also analyzed four large text blocks gen-
erated by the GRU RNN. The results can be found in the ap-
pendix. Our model was correct almost 50% of the time! It
was able to correctly classify Hannah as ENFP, and correctly
labelled 2 of the 4 generated text blocks. In conclusion, al-
though sentiment was a poor predictor of MBTI, the TF-IDF
model was able to predict MBTI fairly well using a reason-
ably sized dictionary of 2000 word features. Our RNN gener-
ated more or less non-sensical text, but was able to simulate
the vocabulary of a specific MBTI type fairly well. Overall,
this project demonstrated the usefulness of Machine Learning
for predicting Meyers-Briggs types, and proved that an RNN
can generate text that accurately represents the word usage of
a specific MBTI type.

6 Appendix
Project Structure

Plot of Emotional Score Model Results

LDA Model Results

Model 15 LDA + Emotion
Validation Accuracy

50 LDA + Emotion
Validation Accuracy

SVM(kernel=’linear’) 0.22034899789067727 0.21852301552781245
RandomForest(max depth=10,
n estimators=20) 0.2286492659587235 0.23024160513679587

LogReg(penalty=’l1’,
tol=0.0005,solver=’liblinear’) 0.23106660503080026 0.22566510500108744

GRU RNN Results

Iteration Time Cross-Entropy Loss Example Line
100 14m 33s 2.2738 I I thing and me mich,even or the sare wart the gone the the mally a as a pinden
200 34m 18s 1.8723 I... OZmVlyboUd I I give thought, not might to fatate like do bout eting
350 58m 49s 1.7740 I’ve who denical adsels (we in are fact worring this? White.
450 79m 45s 1.8029 If. I do who hate ancound happens to have a seen a dirlabcd and it an times
550 90m 47s 1.6376 I’d that at... abcd is abcd accomput persone and my for I’m she here it of an abcd
950 150m 59s 1.6561 I be what your Scare she were doing and always tried strange the called the thread for
1000 159m 12s 1.4018 I have a little with that how to make term of person, and much done to

Fun Results

Blog Post TF-IDF Prediction
Tristrum’s Why Penn Essay (Category 11) 7
Hannah’s Text Message Collection (Category 15) 15
Eric’s Why Penn Essay (Category 15) 4
RNN Generated Blog with Category 1 Training Data 1
RNN Generated Blog with Category 1 Training Data 7
RNN Generated Blog with Category 7 Training Data 6
RNN Generated Blog with Category 7 Training Data 7

It’s Personal - Myers-Briggs Machine Learning
Problem

● Understanding self
● Alleviates self

identification

Predictive Approach
● Naive Bayes

○ TF-IDF
○ MBTI top 20 words

● LDA Models
○ Random Forest
○ Logistic Regression
○ SVM

INFP Top 20 Words

Eric Chiu
Hannah Sheetz
Tristrum Tuttle

It’s Personal - Myers-Briggs Machine Learning
Conclusions

● TF-IDF relatively good predictor
● Sentiment not a good predictor
● RNN simulate vocabulary of MBTI

type well

Generative Approach
● Recurrent Neural Net

○ Neural net with memory

GRU RNN Results

	Problem Background
	Approach
	Data Overview
	Principle Data Analysis
	Data Cleaning

	Problem 1: Myers-Briggs Prediction
	Models
	Results

	Problem 2: Myers-Briggs Text Generation
	Models
	Results

	Conclusion
	Appendix

